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Consensus of multi-agent systems

Consensus: Agents achieving an agreement on their common state by
using information from the neighbors.
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Consensus of multi-agent systems

Theoretical results:

Finite-time consensus,

Consensus of high-order systems,

Consensus with time delay,
...

Practical applications:

Autonomous underwater vehicles,

Unmanned air vehicles,

Wireless sensor network,
...
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Control systems with saturating actuators - fundamental
results

ẋ = Ax + Bu, x ∈ Rn, ||u||∞ ≤ 1.

Null controllable region C:

C = {x(0) ∈ Rn : ∃u, ‖u‖∞ ≤ 1 and T ≥ 0, s.t. x(T ) = 0} .

General characterization of C [Hsu, PhD Dissertation ’76]

Assume that (A,B) is controllable.

If A is semi-stable (λ(A) ⊂ C− ∪ C0), then, C = Rn.

If A is anti-stable (λ(A) ⊂ C+), then, C is a bounded convex open set.

If A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
, A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 ,

λ(A1) ⊂ C+, λ(A2) ⊂ C− ∪ C0, then, C = C1 × Rn2 , where C1 is the
controllable region of ẋ1 = A1x1 + B1σ(u).
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Control systems with saturating actuators - fundamental
results

Characterization of C1
T. Hu and Z. Lin, Control Systems with Actuator Saturation: Analysis and
Design, Birkhauser, 2001.

A =

[
0 −0.5
1 1.5

]
, B =

[
0
−1

]
⇒ ∂C =

{
±
(
−2e−At + I

)
A−1B : t ∈ [0,∞]

}
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Control systems with saturating actuators - fundamental
results

Global and semi-global stabilization

Global stabilization requires (A,B) to be asymptotically null
controllable with bounded controls (ANCBC), i.e., (A,B) is
stabilizable and λ(A) ⊂ C− ∪ C0 [Sussmann, Sontag & Yang, CDC ’90]

in general, nonlinear feedback laws are needed [Fuller, IJC ’76;

Sussmann & Yang, CDC ’91]

nonlinear, but smooth, stabilizers [Sussmann, Sontag & Yang; Teel;

Megretski; Lin; · · · , ’90s]

Semi-global stabilization can be achieved with linear feedback [Lin,

Low Gain Feedback, Springer, ’98]
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Consensus of multi-agent systems subject to input
saturation [Meng, Zhao & Lin, SCL ’13, Zhao & Lin, CCC ’13]

Consider a group of N networked follower agents subject to actuator
saturation:

ẋi = Axi + Bσ(ui ), i = 1, 2, · · · ,N,

where xi ∈ Rn is the state, ui ∈ Rm is the input, (A,B) is stabilizable, and
σ(ui ) = [σ(ui1), σ(ui2), · · · , σ(uim)]T, with σ(uij) = sign(uij) min{|uij |,∆}.

The trajectory of the leader agent is governed by

ẋ0 = Ax0.
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Consensus of multi-agent systems subject to input
saturation [Meng, Zhao & Lin, SCL ’13, Zhao& Lin, CCC ’13]

Global leader-following consensus problem

Design a local feedback law for each follower agent such that

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N.

Semi-global leader following consensus problem

For any given bounded set X ⊂ Rn, design a local feedback law for each
follower agent such that, for all xi (0) ∈ X , i = 0, 1, 2, · · · ,N,

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N.

Related problems

Consensus problems for multi-agent systems subject to simultaneous
actuator position and rate saturation.
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Semi-global stabilization of linear systems with position
and rate-limited actuators [Lin, SCL ’97]

Consider a linear system with both position and rate-limited actuators,
ẋ = Ax + Bσp(v),
v̇ = σr(−v + u),
y = Cx ,

is semi-globally asymptotically stabilizable by linear state feedback if the
open loop system is asymptotically null controllable with bounded
controls, that is (A,B) is stabilizable in the usual linear systems theory
sense and all eigenvalues of A are on the closed left-half plane. If, in
addition, (A,C ) is detectable, then the system is semi-globally
asymptotically stabilizable by linear output feedback.
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Problem statement

Consider a group of N networked follower agents with position and
rate-limited actuators,{

ẋi = Axi + Bσp(vi ),
v̇i = σr(−vi + ui ), i = 1, 2, · · · ,N,

where saturation functions σp(s) and σr(s) are respectively defined as
σp(s) = sign(s) min{∆p, |s|} and σr(s) = sign(s) min{∆r, |s|}, for some
∆p > 0 and ∆r > 0.

The trajectory of the leader agent is governed by

ẋ0 = Ax0.
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Problem statement

Semi-global consensus by linear state feedback

For any a priori given bounded sets X0 ⊂ Rn and V0 ⊂ Rm, construct a
linear state feedback control law ui for each follower agent, which only
uses local information, such that all these feedback control laws together
achieve semi-global leader-following consensus, that is, for all xi (0) ∈ X0,
i = 0, 1, · · · ,N, and vi (0) ∈ V0, i = 1, 2, · · · ,N,

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N.

Zongli Lin University of Virginia July 25, 2014 12



Problem statement

Semi-global consensus by linear output feedback

For any a priori given bounded sets X0 ⊂ Rn and V0 ⊂ Rm, construct a
linear observer based output feedback control law ui for each follower
agent, which only uses local information, such that all these feedback
control laws together achieve semi-global leader-following consensus, that
is, for all xi (0), x̂i (0) ∈ X0, i = 0, 1, · · · ,N, and vi (0) ∈ V0,
i = 1, 2, · · · ,N,

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N,

where x̂ is the state of the observer.
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Graph theory

GN = {V, E} : Graph

V = {ν1, ν2, · · · , νN} : Nodes

E ∈ V × V : Edges

(vi1, vi2), (vi2, vi3), · · · : Path

AN = [aij ] : Adjacency matrix

LN = [lij ] : Laplacian matrix

diag{a10, a20, · · · , aN0} : Connection between followers and leader

An undirected graph
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Preliminaries

Assumption 1

The undirected graph GN is connected and ai0 > 0 for at least one
i , i = 1, 2, · · · ,N.

Denote M = LN + diag{a10, a20, · · ·, aN0}.

Lemma 1 [Hu & Hong, Physica A ‘07]

Let Assumption 1 hold. Then, M is symmetric and positive definite.

For the positive definite matrix M, we order its eigenvalues as
0 < λ1 ≤ λ2 ≤ · · · ≤ λN .
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Preliminaries

Assumption 2

The pair (A,B) is stabilizable and all eigenvalues of A are on the closed
left-half plane.

Lemma 2[Lin, Low Gain Feedback, London’98]

Let Assumption 2 hold. Then, for each ε ∈ (0, 1], there exists a unique
matrix P(ε) > 0 that solves the algebraic Riccati equation (ARE)

ATP + PA− PBBTP + εI = 0.

Moreover, such a P(ε) satisfies

1 limε→0 P(ε) = 0;

2 There exists a constant α > 0, independent of ε, such that∥∥∥P 1
2 (ε)AP−

1
2 (ε)

∥∥∥ ≤ α, ε ∈ (0, 1].
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Preliminaries

Corollary 1

Let Assumptions 1 and 2 hold. Then, there exists a unique positive
definite solution P(ε) to the following algebraic Riccati equation

ATP + PA− γPBBTP + εI = 0, ε ∈ (0, 1]

where γ is any positive constant such that γ ≤ λ1.

Lemma 3

Let Assumptions 1 and 2 hold. Then, for any vector x ∈ RNn, the
following inequality always holds,

xT(M2 ⊗ PBBTP)x ≥ γxT(M ⊗ PBBTP)x ,

where γ ≤ λ1.
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Semi-global consensus by linear state feedback

Control laws:

ui = − 1

ε2
BTP(ε)

 N∑
j=1

aij(xi − xj) + ai0(xi − x0)

− ( 1

ε2
− 1

)
vi ,

i = 1, 2, · · · ,N.

Theorem 1

Let Assumptions 1 and 2 hold. Then, under the linear state feedback
control laws, the group of follower agents and the leader agent achieve
semi-global leader-following consensus. That is, for any given bounded sets
X0 ⊂ Rn and V0 ⊂ Rm, there is an ε∗ > 0 such that, for any ε ∈ (0, ε∗],

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N,

for all xi (0) ∈ X0, i = 0, 1, · · · ,N, and vi (0) ∈ V0, i = 1, 2, · · · ,N.
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Proof of Theorem 1

Let the error states be x̄i = xi − x0, i = 1, 2, · · · ,N. Denote
x̄ = [x̄T

1 , x̄
T
2 , · · · , x̄T

N ]T, v = [vT
1 , v

T
2 , · · · , vT

N ]T and u = [uT
1 , u

T
2 , · · · , uT

N ]T.
Then we have {

˙̄x = (IN ⊗ A)x̄ + (IN ⊗ B)σp(v),
v̇ = σr(−v + u).

Notice that the state feedback control laws can be written as

u = − 1

ε2
(v + (M ⊗ BTP)x̄) + v .

Construct a Lyapunov function,

V (x̄ , v) = x̄T(M ⊗ P)x̄ + (v + (M ⊗ BTP)x̄)T (v + (M ⊗ BTP)x̄) ,

which is positive definite since M and P are both positive definite.
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Proof of Theorem 1

Let c > 0 be a constant scalar such that

c ≥ sup
ε∈(0,1],xi∈X0,i=0,1,··· ,N,vi∈V0,i=1,2,··· ,N

V (x̄ , v).

Such a c exists since X0 and V0 are both bounded and limε→0 P(ε) = 0.

Let LV (c) :=
{

(x̄ , v) ∈ RN(n+m) : V (x̄ , v) ≤ c
}

. Let ε∗1 ∈ (0, 1] be such
that for all ε ∈ (0, ε∗1], (x̄ , v) ∈ LV (c) implies that

‖(M ⊗ BTP(ε))x̄‖ ≤ ∆

3
,

‖(M ⊗ BTP(ε)A)x̄‖ ≤ ∆

3Nm
,

‖(M ⊗ BTP(ε)B)σp(v)‖ ≤ ∆

3Nm
,

where ∆ = min{∆p,∆r}.
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Proof of Theorem 1

The derivative of V along the trajectories of the closed-loop system inside
the level set LV (c) can be evaluated as follows,

V̇ ≤ −εx̄T(M ⊗ In)x̄ + 2
Nm∑
k=1

(
− µk

(
σp

(
vk
)
− µk

)
+
(
vk − µk

)
×
(
σr

(
− 1

ε2

(
vk − µk

))
+ F k x̄ + K kσp(v)

))
,

where vk is the kth element of v = [vT
1 , v

T
2 , · · · , vT

N ]T, µk is the kth
element of µ = −(M ⊗ BTP)x̄ , F k is the kth column of matrix
F = (M ⊗ BTPA) and K k is the kth column of matrix (M ⊗ BTPB).
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Proof of Theorem 1

Discuss the derivative of V under the following three cases:

|vk − µk | > ε2∆ for all k = 1, 2, · · · ,Nm,
|vk − µk | < ε2∆ for at least one k but not all k, k = 1, 2, · · · ,Nm,
|vk − µk | ≤ ε2∆ for all k = 1, 2, · · · ,Nm.

We arrive at the conclusion that, there exists an ε∗ ∈ (0, ε∗1] such that, for
all ε ∈ (0, ε∗],

V̇ < 0,∀(x̄ , v) ∈ Lv (c) \ {0}.

This implies that the closed-loop system is asymptotically stable at
(x̄ , v) = (0, 0) with LV (c) included in the domain of attraction, and hence,

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N,
hold for all xi (0) ∈ X0, i = 0, 1, · · · ,N and vi (0) ∈ V0, i = 1, 2, · · · ,N.
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Semi-global consensus by linear output feedback

Assumption 3

The pair (A,C ) is detectable.

Construct a state observer for each agent as follows,

˙̂xi = Ax̂i + L(yi − Cx̂i ), i = 0, 1, · · · ,N,
where x̂i ∈ Rn and L is any matrix such that A− LC is Hurwitz.

Control laws:

ui = − 1

ε2
BTP(ε)

 N∑
j=1

aij(x̂i − x̂j) + ai0(x̂i − x̂0)

− ( 1

ε2
− 1

)
vi ,

i = 1, 2, · · · ,N.
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Semi-global consensus by linear output feedback

Theorem 2

Let Assumptions 1, 2 and 3 hold. Then, under the linear output feedback
control laws, the group of follower agents and the leader agent achieve
semi-global leader-following consensus. That is, for any given bounded
sets X0 ⊂ Rn and V0 ⊂ Rm, there is an ε∗ > 0 such that, for any given
ε ∈ (0, ε∗],

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N,

for all xi (0), x̂i (0) ∈ X0, i = 0, 1, · · · ,N, and vi (0) ∈ V0, i = 1, 2, · · · ,N.
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Proof of Theorem 2

Let ei = xi − x̂i , i = 0, 1, · · · ,N. We have{
ė0 = (A− LC )e0,
ėi = (A− LC )ei + Bσp(vi ), i = 1, 2, · · · ,N.

Let ēi = ei − e0, i = 1, 2, · · · ,N, then we have

˙̄ei = (A− LC )ēi + Bσp(vi ), i = 1, 2, · · · ,N.

Denote x̄i = xi − x0, ȳi = yi − y0, i = 1, 2, · · · ,N. Then we have

˙̄xi = Ax̄i + Bσp(vi ),
v̇i = σr(−vi + ui ),
˙̄ei = (A− LC )ēi + Bσp(vi ),

ui = − 1
ε2
BTP

(∑N
j=1aij((x̄i−x̄j)−(ēi−ēj))+ai0(x̄i−ēi )

)
−
(
1
ε2
−1
)
vi ,

i = 1, 2, · · · ,N.

Zongli Lin University of Virginia July 25, 2014 25



Proof of Theorem 2

Let x̄ = [x̄T
1 , x̄

T
2 , · · · , x̄T

N ]T, v = [vT
1 , v

T
2 , · · · , vT

N ]T, u = [uT
1 , u

T
2 , · · · , uT

N ]T,
and ē = [ēT

1 , ē
T
2 , · · · , ēT

N ]T. Then we have
˙̄x = (IN ⊗ A)x̄ + (IN ⊗ B)σp(v),
v̇ = σr(−v + u),
˙̄e = (IN ⊗ (A− LC ))ē + (IN ⊗ B)σp(v),
u = − 1

ε2
(M ⊗ BTP) (x̄ − ē)−

(
1
ε2
− 1
)
v .

Construct a Lyapunov function,

V (x̄ , v , ē) = x̄T(M ⊗ P)x̄ + λ
1/2
max(P)ēT(M ⊗ P0)ē + (v + (M ⊗ BTP) x̄

− (M ⊗ BTP) ē)T (v + (M ⊗ BTP) x̄ − (M ⊗ BTP) ē) ,

where P0 > 0 is the unique positive definite solution to the following
Lyapunov equation,

(A− LC )TP0 + P0(A− LC ) = −I .
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Proof of Theorem 2

Let c > 0 be a constant scalar such that

c ≥ sup
ε∈(0,1],xi ,x̂i∈X0,i=0,1,··· ,N,vi∈V0,i=1,2,··· ,N

V (x̄ , v , ē).

Such a c exists since X0 and V0 are both bounded and limε→0 P(ε) = 0.

Let LV (c) :=
{

(x̄ , v , ē) ∈ RN(2n+m) : V (x̄ , v , ē) ≤ c
}

. Let ε∗1 ∈ (0, 1] be
such that, for all ε ∈ (0, ε∗1], (x̄ , v , ē) ∈ LV (c) implies that,

‖(M ⊗ BTP) x̄‖ ≤ ∆

8
, ‖(M ⊗ BTP) ē‖ ≤ ∆

8
, ‖(M ⊗ BTPA) x̄‖ ≤ ∆

8Nm
,∥∥∥λ1/2max(P) (M ⊗ BTP0) ē

∥∥∥ ≤ ∆

8
, ‖(M ⊗ BTP(A− LC )) ē‖ ≤ ∆

8Nm
, (1)

where ∆ = min{∆p,∆r}.
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Proof of Theorem 2

The derivative of V inside the level set LV (c) can be evaluated as follows,

V̇ ≤ −εx̄T(M ⊗ In)x̄ − λ1/2max(P)ēT(M ⊗ In)ē + 2
Nm∑
k=1

(
−λ1/2max(P)ηkσp

(
vk
)

−1

4

(
φk
)2)

+ 2
Nm∑
k=1

(
−1

4

(
φk
)2
− φk

(
σp

(
vk
)
− φk

)
+
(
vk − φk + ωk

)(
σr

(
− 1

ε2

(
vk − φk + ωk

))
+ G k x̄ + Hk ē

))
,

where vk is the kth element of v , ηk is the kth element of
η = − (M ⊗ BTP0) ē, φk is the kth element of φ = − (M ⊗ BTP) x̄ , ωk is
the kth element of ω = − (M ⊗ BTP) ē, G k is the kth column of matrix
G = M ⊗ BTPA, and Hk is the kth column of matrix
H = M ⊗ BTP(A− LC ).
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Proof of Theorem 2

Discuss the derivative of V under the following three cases:∣∣vk − φk + ωk
∣∣ > ε2∆ for all k = 1, 2, · · · ,Nm,

|
∣∣vk − φk + ωk

∣∣ > ε2∆ for at least one k but not all
k , k = 1, 2, · · · ,Nm,∣∣vk − φk + ωk

∣∣ ≤ ε2∆ for all k = 1, 2, · · · ,Nm.

We can conclude that, there exists an ε ∈ (0, ε∗1] such that, for all
ε ∈ (0, ε∗],

V̇ < 0,∀(x̄ , v) ∈ Lv (c) \ {0}.

This implies that the closed-loop system is asymptotically stable at
(x̄ , v) = (0, 0) with LV (c) included in the domain of attraction, and hence,

lim
t→∞

(xi (t)− x0(t)) = 0, i = 1, 2, · · · ,N,
hold for all xi (0) ∈ X0, i = 0, 1, · · · ,N, and vi (0) ∈ V0, i = 1, 2, · · · ,N.
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An example

Consider a group of 5 agents and a leader with

A =

[
−1 0

0 0

]
, B =

[
0
1

]
, C =

[
1 1

]
,

and ∆p = 5,∆r = 0.5.

The communication topology among agents is as shown below:
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An example

For the given graph, we have

M =


3 −1 −1 0 0
−1 2 0 −1 0
−1 0 2 0 −1

0 −1 0 1 0
0 0 −1 0 1

 .

The minimum eigenvalue of M is λmin(M) = 0.1392.

We choose γ = 0.01 < λmin(M).
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Simulation results - state feedback

Choose the initial values of the agents randomly as[
x1(0) x2(0) x3(0) x4(0) x5(0) x0(0)

]
=

[
−10 0.1 −80 98 18 1

10 108 10 −0.1 −0.5 20

]
,[

v1(0) v2(0) v3(0) v4(0) v5(0)
]

=
[

0.1 0.2 0.3 0.4 0.5
]
.

We will simulate the closed-loop system for two different values of ε,
ε = 1 and ε = 0.1.
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Simulation results - state feedback
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Simulation results - state feedback
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Evolutions of the agents under state feedback control laws when ε = 0.1.
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Simulation results - output feedback

Choose the initial values of the agents randomly as[
x1(0) x2(0) x3(0) x4(0) x5(0) x0(0)

]
=

[
−10 0.1 −80 98 18 1

10 108 10 −0.1 −0.5 20

]
,[

v1(0) v2(0) v3(0) v4(0) v5(0)
]

=
[

0.1 0.2 0.3 0.4 0.5
]
.

Choose the initial values of observer of the agents randomly as[
x̂0(0) x̂1(0) x̂2(0) x̂3(0) x̂4(0) x̂5(0)

]
=

[
−9 10 −90 70 10 −1

9 100 90 1 2 13

]
.

We will simulate the closed-loop system ε = 0.01.
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Simulation results - output feedback
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Evolutions of the agents under output feedback control laws with ε = 0.01.
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Conclusions

We studied the semi-global leader-following consensus problem for a group
of linear systems in the presence of both actuator position and rate
saturation.

We constructed both a family of linear state feedback control laws and a
family of linear output feedback control laws for each follower agent by
using low gain feedback design strategy, which only uses the information of
agent and its neighbors.

Semi-global leader-following consensus can be achieved by using the
proposed control laws when the communication topology among follower
agents is a connected undirected graph and the leader is a neighbor of at
least one follower.

Great challenges remain when the agents are open loop exponentially
unstable.
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